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Abstract—A theory was developed in [1] for the dynamical behaviour under transverse load of ideal
fibre-reinforced beams (that is, beams which are inextensible in their longitudinal direction) which exhibit
rigid-plastic mechanical response. This theory is here applied to the problem of a beam of finite length, free
at both ends, which is struck centrally by a mass which subsequently adheres to the beam. The general
solution for the motion of the beam is determined for a fairly wide class of non-linear strain-hardening laws.
Simplified approximate solutions are derived for the cases of (a) a heavy striker, (b) a light striker and (c)
low impact speed and/or slight strain-hardening.

1. INTRODUCTION

The general theory of the behaviour of ideal fibre-reinforced rigid-plastic beams was developed
in [1]. General accounts of the theory of ideal fibre-reinforced materials have been given by
Spencer[2], Pipkin[3] and Rogers[4]. The term ‘ideal fibre-reinforced beam’ is used here to
describe a beam which is inextensible in its axial direction. In the context of a rigid-plastic
theory such a beam may be regarded as the limiting case of a beam made of material whose
shear yield stress (for shear on planes parallel to the beam axis) is much less than its tensile
yield stress in the axial direction. For example, the beam may consist of a ductile metallic
matrix reinforced in the axial direction by strong stiff fibres, or be of laminated or sandwich
construction in which the laminations are alternately strong and ductile. A beam of this type
will tend to deform by shear rather than by flexure; in the limit of an ideal fibre-reinforced
beam, shear is the only allowed deformation mechanism.

Under certain assumptions stated in [1], it was shown there that discontinuities in slope and
velocity may propagate along an ideal fibre-reinforced beam of strain-hardening rigid-plastic
material. The theory was applied to the problem of a beam, moving normal to its axis, whose
mid-point is suddenly brought to rest by transverse impact on a rigid stop. Explicit solutions to
the problem were obtained for the case of linear strain-hardening in [1], and subsequently
extended to a more general strain-hardening law in [5]. Some further solutions, for the linear
strain-hardening case, have been given by Jones[6]. In this series of papers, we give some
further solutions and investigate the effect of various parameters on these solutions. These
solutions are all for impulsive loading of a beam struck transversely by a mass which
subsequently adheres to the beam. In Part I we consider a free beam struck at its mid-point; in
Part II we consider a beam supported at its ends and struck at any point; and in Part III we
consider a cantilever beam struck at any point. A discussion of the solutions, in the light of the
approximations made in formulating the theory, is given at the end of Part III.

2. SUMMARY OF GENERAL THEORY
A full account of the theory is given in [1]. The notation used here differs a little from that
employed in [1]. Time is denoted by T and distance along the beam in its initial position by X.
The deflection of the beam (assumed small) is denoted by U(X, T) and its velocity in the
transverse direction by V(X, T). The slope of the beam is y(X, T), so that

dU(X, T)

oU(X, T)
X '

y(X,T)= T

, VX, T)= 2.1
If V and vy are discontinuous at X = A(T), then continuity of displacement at X = A(T) gives
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the kinematic condition
dA
arlY1=-1vl (2.2)

where, for any function ¢(X, T),[¢] denotes the jump in ¢ across X = A(T). Thus
(¢]l=d(A+0,T)—p(A-0, T). (2.3

The shear force on the cross-section X at time T is denoted Q(X, T). The yield condition
takes the form

1Ql=< Qs (2.4)

where the yield shear force Q, depends on the history of y. For simplicity we assume that y is,
at each X, either a non-increasing or non-decreasing function of T, and then we may take

Q = Q) (2.5)

where Q, is an increasing function of |y|. The equality sign holds in (2.4) whenever deformation
is taking place; in particular it applies at a section across which y undergoes a discontinuous
change. Thus if Q, is a continuous function of |y|, then Q is discontinuous at X = A(T).
Conservation of momentum of a beam element crossed by the discontinuity gives the dynamic
jump condition

dA
martV1=-10Ql, (2:6)

where m is the mass of the beam per unit length, and is assumed to be constant. We make the
usual assumption that the material entering a plastic region is about to yield, so that Q = Q, at
X=A+0and X =A-0, and (2.6) takes the form

dA
ma?[V]=I[Qp] @n

where the upper sign holds if Q is positive and the lower if Q is negative. For positive plastic
working it is necessary that Qay/at >0, which implies Qy > 0 since y is monotonic.
In order to obtain explicit results, we shall use the special strain-hardening relation

Q= Qo+ Qiyl", 238)

where Qo, Q1 and n are positive constants. Then (2.7) becomes
dA
mﬁ[V] = 7Qll¥["]. (2.9
In particular, if n =1 we have the case of linear strain-hardening. Then (2.9) becomes
dA
marlVl== Q)1 (2.10)

and (2.2) and (2.10) give

(=9

da_ *¢, where mci= Q. .11

[=N
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However, we shall often consider the more general case in which n is not restricted to have the
value one.

Segments of the beam may move as rigid bodies. In such segments, or in any region where
Q, V and vy are continuous, we have

aQ _ v
x T PX T =m_r, 2.12)

where P(X, T) is the resultant force in the positive Y-direction applied, per unit length, to the
beam.

A feature of problems involving ideal fibre-reinforced materials is the occurrence of singular
surfaces (sheets of fibres) which carry infinite stress but finite force. For a rectangular beam
0< Y < H, of cross-sectional area S, the surfaces Y = H, Y =0 are singular, and the tensile
force F(X, T) per unit length in the Z-direction in these surfaces is given by

(2.13)

where the positive sign applies at Y = H and the negative sign at Y =0.

We suppose that the beam initially lies along the X-axis from X =—L to X =L and is
struck at time T =0 by a mass 2M travelling with speed V. It is convenient to introduce the
non-dimensional variables

A U Vv
, a—z, u—.-z, v——‘TO, t=—. 2.14)

Then

du ou dA da )
= U_E’ ar - Vo(—ﬂ—Voa, (2.15)

Y
where, here and henceforth, superposed dots denote differentiation with respect to £. We also
introduce the non-dimensional parameters

__A_'I_ Bz=

a= mV02 2n=g
mL’

@ YT

(2.16)

In terms of these non-dimensional variables and constants, eqns (2.2) and (2.9) become

dalyl=-[v], .17
a[v]1=F 87 y|"). (2.18)

The parameters a, B, @ and n can be given physical interpretations. The parameter « is the
ratio of the mass of the striker to the mass of the beam. We shall use the terms ‘heavy striker’
for the case a » 1, and ‘light striker’ for the case « < 1. The parameter B is related to the impact
velocity and the speed of propagation of a discontinuity. If we denote (as in (2.11)) ¢2= Qi/m,
then from (2.2) and (2.9)

day’ Sl
(dT) ==l 2.19)

As noted above, this reduces to dA/dT = = ¢ in the case n = 1. In general

Vo_ m 1/2_ .
2=v(G) =7 (2.20)
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s0 @ "B relates the impact speed to the propagation speed. The parameter  is a measure of the
rate of strain-hardening; the limit w —0 corresponds to a perfectly-plastic (non-hardening)
material with yield shear force Qo. The constant n is available (with Q and Q) for fitting
empirical shear force-deflection gradient curves; Fig. | illustrates the shapes of these curves for

n=0,0<n<l1, n=1 and n>1. For algebraic convenience we also introduce a constant ¢
defined as

q=-". n=—2fq, (2.21)

and note that g increases from 0 to 2 as n increases from 0 to «, and ¢ =1 when n = 1. The
limit g—>0 or n >0 gives a perfectly-plastic material with yield shear force Qo+ Q.

3 A

Qo+ Oy

n<l

. -
0 ' 1!

Fig. 1. The strain-hardening relation Q, = Qo+ Qi|y|".

The momentum 2I and kinetic energy 2E of the striker before impact are, respectively,

21 =2MV,, 2E= MV, (2.22)
and we note the relations
I , 2E
=, = 23
aﬂ L(on)l 2 aB Q()L (2 )

3. CENTRAL IMPACT OF FREE BEAM. FORMULATION

In this section we consider that the beam is free to move and initially lies along the X -axis
from X = —L to X = L. It is struck at time T = 0 by the mass 2M moving with speed V; in the
positive Y-direction, and the mass adheres to the beam after impact. We seek solutions in
which, during the subsequent motion, the configuration of the beam is of the form illustrated in
Fig. 2. It is sufficient to consider the right-hand half 0 < X < L of the beam. In this CP moves
as a rigid body with speed V; and PR moves as a rigid body with speed V,. V and vy are
discontinuous at time T at the point X = A(T). The value of y in the deformed segment
0< X < A(T) i1s denoted by f(X]/L), so that

AXIL), 0<X <A(T),
y=1-fCXL), -AT)<X<0, G.
0, ~L<X<-A(T)and A(T)<X <L.

The initial conditions are V;= V,, V2=0, A=0 when T =0. We note that y<0in(0< X <L,
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L

>y

1 4
-L -A(T) 0 AT) L
Fig. 2. Central impact of a free beam. Assumed form of deformation.
s0 in this region
Q= Qo+ Qu(— )" (3.2)

The governing equations are as follows:
(a) Equation of motion of CP:

dvi _ A\
M+ may 2 =-a-of-1(£)}. (33)
(b) Equation of motion of PR:
m(L - A)% = . (3.9

(c) Dynamic jump condition at X = A (from (2.9)):

dA A\)"
mami-va=ef-1(7)}- 3.5
(d) Kinematic jump condition at X = A (from (2.2)):
dA (A
Vi-Va=-T2 f(z). (3.6)

We introduce the non-dimensional variables (2.14) and non-dimensional parameters (2.16),
together with

Vi V2

v =-‘70, v, = Vo 37N
In terms of these, eqns (3.3) to (3.6) become
Ba+ a)ti=—1- 0™ {~f(a)}", (3.8)
B(1-a)i =1, (3.9)
Bd(v1- v2) = 0™{~f(a)}", (3.10)
v1— 2= —df(a), @3.1H

and the initial conditions become

=1, v,=0, a=0, whent=0. (3.12)



828 L. SHaw and A. J. M. SPENCER

Equations (3.10) and (3.11) then give the initial values of ¢ and y as
a0) = (B2 f(0) = - (BT MY, (3.13)

This vatue of f(0) gives the slope of the beam at x = 0 after the impact. We note that for given
properties m, Qo, @: of the beam, f(0) depends only on the speed V, of the striker and not on
its mass M, and that f(0)> as Vp—> .

4. GENERAL SOLUTION
By adding (3.8), (3.9) and (3.10), integrating, and inserting the initial conditions, we obtain

(a+a)vri+(1-a):=a. 4.1

This equation expresses conservation of linear momentum for the entire beam and striker.
From (3.10), (3.11) and (4.1) there follows, by eliminating f(a) and v,

2 . n+l 2n a_(1+a)02}n_l
= _— . 4.2
pa @ { ata (42)
Then, by eliminating ¢ from (3.9) and (4.2),
da a a—(1+ az)vz}"—l
—= —apy———— . 4.3
o= (ep - af T “3)
where q is given by (2.21).
By integrating (4.3) and inserting the initial conditions, there follows
a 1 a \? —q a+ta 43
(l+a_v2) B <l+a) ~4(B) {Fq_l(1+a)-Fq_l(l+a)}’ “4
where
qu_l d{ . o Z’
- = = —_— =z<1). 4.
Fo@= [ Sop=23 20 022 4.5)

The function F;-i(z) is a special case of an incomplete beta function (see, for example,
Abramowitz and Stegun[7]). Equation (4.4) determines v; in terms of a(t). Equation (4.1) then
gives

q

(o2 () - e (22 o)) o

which determines v, in terms of a(¢).
The beam ceases to deform when v; = va. The discontinuity then stops propagating and the
beam subsequently moves as a rigid body with speed v;V,, where, from (4.1),

a
o=, @7

Hence (4.4) and (4.6) may be written

(o= v2) = v - q(wﬂ)“"{Fq-l(vf + I—Jr“—a) - Fq-l(uf)}, @8

(o1 )" = (;‘—;—:‘;)[ o'~ a(@B) | Foor(ur + =) = Forston } | 49)
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The final value as of a is therefore the root of

Fat (v’ ¥ ﬁ) = Foi(vp) + @ 'v " (0B)". (4.10)

It is evident from (4.5) and (4.7) that this equation has a single root between a =0 and a =1,
and so the discontinuity always comes to rest before it reaches the end of the beam.
From (3.10) and (3.11)

fla)=—-0 B (v:- 12",

and hence, from (4.8) and (4.9),

fla)= —ﬂz(wﬁ)""<vf ; ﬁ)ﬂ[vﬁ - q(wﬁ)’"{Fq-l(uf + ﬁ"—a) - Fq-l(v,)}]a_m. @.11)

Now substituting from (4.8), (4.9) and (4.11) into (3.11) and integrating gives

a

=y [ (s 722) [t atopr{Fes(orr )R} da,

and this determines a(¢) implicitly. The deflection Lu(x, t) of the beam at time {, relative to its
end points, is given by

a(t)
- f(x)dx, 0=sx=<al1),
ux, =y -~ 4.13)

0, a()sx<1.

The shear force in the rigid sections of the beam and the tensions in the singular fibres are
readily determined from (2.12) and (2.13). It may be verified that the rate of plastic working at
each shear hinge is positive, and that the yield condition is not violated in the rigid segments.

The above results simplify considerably for the case of linear hardening, n = 1, ¢ = 1. Then
F,—i{z) reduces to —log (1 —2) and, for example, an explicit value of a; can be obtained by
solving (4.10). This linear hardening case has been solved by Jones[6] and so is not discussed
further.

The function F,-i(z) can also be expressed in terms of standard functions for certain other
values of n. For example, for g = 3/2 (n = 3), we have

1+Vz
Fip(z)= —2\/z+log 1=vz’
and for g = 1/2 (n = 1/3), we have
L 1+v/2z
F_ip(z)=log 1=vz'

5. HEAVY STRIKER: a-»»
From (4.5) we have

q-1

q-1
Y,
Frti =1 =0 +a)(r)

Hence

a a ., a
Fq’l(vf +m)— Foi(vs) = 'H—an_l(vf)'i- (0] {(m) }-") a asa-—>o,
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The values of v, v, vy and ¢ in this limit are then readily obtained from (4.8), (4.9), (4.11) and
(4.12). In this case the problem is identical to the one discussed in [5] except that the direction
of the Y-axis is reversed and a uniform speed Vj is superposed on the solution given in [5]. The
results of [5] may be recovered by taking the limit a ».

6. LIGHT STRIKER: a <1
The solution to be given in this section is valid for a <1 provided that wB and ¢ are not
large compared to one. It is also valid, without restriction on a, if @8 <1. However, it will be
shown in Section 7 that when wB <1, further simplification is possible.
We note first that if a <1 (with no restriction on a) we have, from (4.5),

Fyt (v, + L)  Fyivp) = =2 Fi (1) + O(a) = av®™ + O(a?). ©.1)
1+a 1+a

Thus if as <1, the solution of (4.10) is, to first order,

ar=q 'v(wp)”. 6.2)
Since a <1 implies vy <1, it follows that a <1 implies ar <1 provided that w8 and ¢~ are not
large compared to one. Then, since ay is the maximum value of 4, an approximate solution for

small @ is given by neglecting the terms of order a” in (6.1). To this approximation, (4.8) and
(4.9) become

. (63)
(1) =+ar(1-3)
Also, from (4.11),
f@) =~ BBy (1+ f)ﬂ(l - a—f)(z_m, (64)
and from (4.12)
v [+ e

7. SOLUTION FOR o <1

The condition wp <1 requires low impact velocity (8 < 1) or slight strain-hardening (w <1)
or both. If wB <1, and q~' is of order one, then from (6.2) a; <vy. Since vy = a/(1 + a), this
implies both of the inequalities

as@g<l, asag<a

Thus to a first approximation we may now neglect a compared to « in the results of Section 6.
This gives, from (6.3), (6.4) and (6.5),

q q
(1_.'2> =1_£, (ﬂ_l) =a—"(l-£), (7.1)
vf as Uf as

2-9)iq

fla)=- Bz(wB)"'(l - ff-) , (7.2)

t = BHwB) fo(l—aif) da=1t 1—(1——‘1)]/q}, 1.3)

as

1—-q)lq
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where

t = qaB (wB) ™ = Bvy, (7.4)

gives the time at which the discontinuity ceases to propagate. Then (7.3) may be written

q

(1 —;";) (1 —é) (1.5)

t - t
Bm_oton_ o, 1(1——). (1.6)
vty v tf

and (7.1) become

Also, from (4.13), (7.2) and (7.5), the deflection of the beam relative to its end points for
0<x=<a(?)is given by

and the final deflection, relative to the end points, is, for 0 < x < g,

2q

Lu(x, t) = %LBzvf<l - ;I’if) . 1.7)

The approximate solutions of Sections 6 and 7 are not valid if g (or equivalently n) is very
small compared to one. In fact, it can be shown from (4.5) and (4.10) that a; > 1 as g >0, and so
the assumption a <1 used in (6.1) is invalid for small values of gq.

It is interesting to note that the maximum final deflection, which is obtained by setting x =0
in (7.7), is independent of the work-hardening parameter q.
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